Main Article Content
Article Details
Albrecht, M., Kortelainen, J., Sawatzky, M., Lukkarinen, J. (2017). Translating bioenergy policy in Europe: Mutation, aims and boosterism in EU energy governance. Geoforum, 87, 73-84; https://doi.org/10.1016/j.geoforum.2017.10.003. (Crossref)
Anca-Couce, A., Hochenauer, C., Scharler, R. (2021). Bioenergy technologies, uses, market and future trends with Austria as a case study. Renewable and Sustainable Energy Reviews, 135, 110237; https://doi.org/10.1016/j.rser.2020.110237. (Crossref)
Andersen, S.P.B., Doming, A., Domingo, G.C. (2021). Biomass in the EU Green Deal: Towards Consensus on the Use of Biomass for EU Bioenergy, Policy Report; Institute for European Environmental Policy (IEEP): Brussels, Belgium.
Bentsen, N., Felby, C. (2012). Biomass for energy in the European Union - a review of bioenergy resource assessments. Biotechnology for Biofuels 5, 25; https://doi.org/10.1186/1754-6834-5-25. (Crossref)
Bentsen, N., Jack, M., Felby, C., Thorsen, B. (2014). Allocation of biomass resources for minimising energy system greenhouse gas emissions. Energy, 69, 506-515; https://doi.org/10.1016/j.energy.2014.03.045 (Crossref)
Berndes, G., Hansson, J. (2007). Bioenergy expansion in the EU: Cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels. Energy Policy, 35(12), 5965-5979; DOI: 10.1016/J.ENPOL.2007.08.003. (Crossref)
Bielski, S., Marks-Bielska, R., Zielińska-Chmielewska, A., Romaneckas, K., Šarauskis, E. (2021). Importance of Agriculture in Creating Energy Security – A Case Study of Poland. Energies, 14(9), 2465; https://doi.org/10.3390/en14092465. (Crossref)
Bórawski, P., Bełdycka-Bórawska, A. (2019). Development of renewable energy sources market and biofuels in The European Union. Journal of Cleaner Production, 228, 467-484; https://doi.org/10.1016/j.jclepro.2019.04.242. (Crossref)
Böttcher, H., Dees, M., Fritz, S.M., Goltsev, V., Gunia, K., Huck, I., Lindner, M., Paappanen, T., Pekkanen, J.M., Ramos, C.I.S., et al. (2010). Biomass Energy Europe: Illustration Case for Europe; International Institute for Applied Systems Analysis: Laxenburg, Austria,
De Wit, M.; Faaij, A.P.C.; Fischer, G.; Prieler, S.; Velthuizen, H.T. (2008). Biomass Resources Potential and Related Costs. In The Cost-Supply Potential of Biomass Resources in the EU-27 (2008). Switzerland, Norway and the Ukraine; Copernicus Institute, Utrecht University and the International Institute of Applied Systems Analysis: Utrecht, The Netherlands; Laxenburg, Austria.
Ericsson, K., Nilsson, L. (2006). Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass and Bioenergy, 30(1), 1-15; https://doi.org/10.1016/j.biombioe.2005.09.001. (Crossref)
European Commission (2014). https://energy.ec.europa.eu/topics/energy-strategy/previous-energy-strategies_en.
Faaij, A. (2006). Bio-energy in Europe: changing technology choices. Energy Policy, 34(3), 322-342; https://doi.org/10.1016/j.enpol.2004.03.026. (Crossref)
Fischer, G., Schrattenholzer, L. (2001). Global Bioenergy Potentials through 2050. Biomass and Bioenergy, 20, 151 159; http://dx.doi.org/10.1016/S0961-9534(00)00074-X (Crossref)
Fischer, G., Hiznyik, E., Prieler, S., Van Velthuizen, H.T. (2007). Assessment of Biomass Potentials for Biofuel Feedstock Production in Europe: Methodology and Results; International Institute for Applied Systems Analysis: Laxenburg, Austria,
Haberl, H., Beringer, T., Bhattacharya, S.C., Erb, K.H., Hoogwijk, M. (2010). The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability, 2(5 6), 394-403. (Crossref)
Hames, B. (2009). Biomass compositional analysis for energy applications. Methods in Molecular Biology, 581, 145-67. https://doi.org/10.1007/978-1-60761-214-8_11. (Crossref)
Hoogwijk, M., Faaij, A., Eickhout, B., De Vries, B., Turkenburg, W. (2005). Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass and Bioenergy, 29(4), 225-257; https://doi.org/10.1016/j.biombioe.2005.05.002. (Crossref)
https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en (2014)
https://ec.europa.eu/eurostat/web/interactive-publications/energy-2023
https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/biomass_en
https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en] [https://www.consilium.europa.eu/en/press/press-releases/2023/10/09/renewable-energy-council-adopts-new-rules/
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Biomass
https://www.statista.com/statistics/1131629/poland-agricultural-land-area/
Janiszewska, D., Ossowska, L. (2022). The role of agricultural biomass as a renewable energy source in European Union countries. Energies, 15(18), 6756; https://doi.org/10.3390/en15186756. (Crossref)
Krasuska, E., Cadórniga, C., Tenorio, J., Testa, G., & Scordia, D. (2010). Potential land availability for energy crops production in Europe. Biofuels, Bioproducts and Biorefining, 4(6), 658-673; https://doi.org/10.1002/bbb.259. (Crossref)
Mandley, S., Daioglou, V., Junginger, H. (2020). EU bioenergy development to 2050. Renewable and Sustainable Energy Reviews, 127, 109858; https://doi.org/10.1016/j.rser.2020.109858. (Crossref)
McCormick, K., Kåberger, T. (2007). Key barriers for bioenergy in Europe: Economic conditions, know-how and institutional capacity, and supply chain co-ordination. Biomass and Bioenergy, 31, 443-452; https://doi.org/10.1016/j.biombioe.2007.01.008. (Crossref)
Moiseyev, A., Solberg, B., Kallio, A., Lindner, M. (2011). An economic analysis of the potential contribution of forest biomass to the EU RES target and its implications for the EU forest industries. Journal of Forest Economics, 17, 197-2013; https://doi.org/10.1016/j.jfe.2011.02.010. (Crossref)
Philippidis, G., Bartelings, H., Helming, J., M'barek, R. (2018). The Good, the Bad and the Uncertain: Bioenergy Use in the European Union. Energies, 11(10), 2703; https://doi.org/10.3390/en11102703. (Crossref)
Polizeli, M., Correa, E., Polizeli, A., Jorge, J. (2011). Hydrolases from Microorganisms used for Degradation of Plant Cell Wall and Bioenergy. Chapter 8, 115-134; https://doi.org/10.1007/978-0-387-92740-4_8. (Crossref)
Proskurina, S., Sikkema, R., Heinimö, J. (2016). Research paper Five years left – How are the EU member states contributing to the 20% target for EU's renewable energy consumption; the role of woody biomass. Biomass and Bioenergy, 95, 64-77; https://doi.org/10.1016/j.biombioe.2016.09.016. (Crossref)
Turkenburg, W.C., Beurskens, J., Faaij, A., Fraenkel, P., Fridleifsson, I., Lysen, E., Mills, D., Moreira, J.R., Nilsson, L.J., Schaap, A., et al. (2000). Renewable energy technologies. In the World Energy Assessment; Goldemberg, J., ed.; United Nations Development Programme: New York, NY, USA.
Van Dam, J., Faaij, A., Lewandowski, I. (2007). Biomass production potentials in Central and Eastern Europe under different scenarios. Biomass and Bioenergy, 31, 345-366; https://doi.org/10.1016/j.biombioe.2006.10.001. (Crossref)
Ward, R. (1983). Food, Chemical Feedstocks and Energy from Biomass. https://doi.org/10.1007/978-1-4757-0833-2_2. (Crossref)
Wieruszewski, M., Mydlarz, K. (2022). The Potential of the Bioenergy Market in the European Union – An Overview of Energy Biomass Resources. Energies, 15(24), 9601; https://doi.org/10.3390/en15249601. (Crossref)
Wood, J. (2004). Burn biomass burn co-fired biomass for electricity generation. Power Engineer, 18(5), 18-21. 10.1049/pe:20040502. (Crossref)
Downloads
- Arkadiusz Weremczuk, Grzegorz Malitka, Influence of Changes in the Prices of Fertilizers and Fuels on the Profitability of Production of Selected Agricultural Crops , Zeszyty Naukowe SGGW w Warszawie - Problemy Rolnictwa Światowego: Tom 22 Nr 3 (2022)
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne 4.0 Międzynarodowe.