The Energy Potential of Agricultural Biomass in the European Union

Main Article Content

Arkadiusz Weremczuk

Abstrakt
The objective of this study is to conduct a quantitative assessment of the theoretical potential of agricultural biomass in EU countries for energy production. It explores various biomass sources, such as agricultural residues, animal husbandry by-products, and energy crops. Using data, the study examines the potential biomass across different EU countries, emphasizing the disparities due to diverse agricultural practices. The analysis underscores the need for customized biomass strategies in each Member State, tailored to their specific agricultural conditions. The study identifies biomass as a vital energy source for the EU's energy independence and reducing fossil fuel reliance. It also highlights the necessity for future research on improving biomass conversion technologies and policy development for integrating agricultural biomass into the energy framework, considering the unique aspects of each country's agricultural sector.

Article Details

Jak cytować
Weremczuk, A. (2023). The Energy Potential of Agricultural Biomass in the European Union. Zeszyty Naukowe SGGW W Warszawie - Problemy Rolnictwa Światowego, 23(4), 44–60. https://doi.org/10.22630/PRS.2023.23.4.16
Bibliografia

Albrecht, M., Kortelainen, J., Sawatzky, M., Lukkarinen, J. (2017). Translating bioenergy policy in Europe: Mutation, aims and boosterism in EU energy governance. Geoforum, 87, 73-84; https://doi.org/10.1016/j.geoforum.2017.10.003. (Crossref)

Anca-Couce, A., Hochenauer, C., Scharler, R. (2021). Bioenergy technologies, uses, market and future trends with Austria as a case study. Renewable and Sustainable Energy Reviews, 135, 110237; https://doi.org/10.1016/j.rser.2020.110237. (Crossref)

Andersen, S.P.B., Doming, A., Domingo, G.C. (2021). Biomass in the EU Green Deal: Towards Consensus on the Use of Biomass for EU Bioenergy, Policy Report; Institute for European Environmental Policy (IEEP): Brussels, Belgium.

Bentsen, N., Felby, C. (2012). Biomass for energy in the European Union - a review of bioenergy resource assessments. Biotechnology for Biofuels 5, 25; https://doi.org/10.1186/1754-6834-5-25. (Crossref)

Bentsen, N., Jack, M., Felby, C., Thorsen, B. (2014). Allocation of biomass resources for minimising energy system greenhouse gas emissions. Energy, 69, 506-515; https://doi.org/10.1016/j.energy.2014.03.045 (Crossref)

Berndes, G., Hansson, J. (2007). Bioenergy expansion in the EU: Cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels. Energy Policy, 35(12), 5965-5979; DOI: 10.1016/J.ENPOL.2007.08.003. (Crossref)

Bielski, S., Marks-Bielska, R., Zielińska-Chmielewska, A., Romaneckas, K., Šarauskis, E. (2021). Importance of Agriculture in Creating Energy Security – A Case Study of Poland. Energies, 14(9), 2465; https://doi.org/10.3390/en14092465. (Crossref)

Bórawski, P., Bełdycka-Bórawska, A. (2019). Development of renewable energy sources market and biofuels in The European Union. Journal of Cleaner Production, 228, 467-484; https://doi.org/10.1016/j.jclepro.2019.04.242. (Crossref)

Böttcher, H., Dees, M., Fritz, S.M., Goltsev, V., Gunia, K., Huck, I., Lindner, M., Paappanen, T., Pekkanen, J.M., Ramos, C.I.S., et al. (2010). Biomass Energy Europe: Illustration Case for Europe; International Institute for Applied Systems Analysis: Laxenburg, Austria,

De Wit, M.; Faaij, A.P.C.; Fischer, G.; Prieler, S.; Velthuizen, H.T. (2008). Biomass Resources Potential and Related Costs. In The Cost-Supply Potential of Biomass Resources in the EU-27 (2008). Switzerland, Norway and the Ukraine; Copernicus Institute, Utrecht University and the International Institute of Applied Systems Analysis: Utrecht, The Netherlands; Laxenburg, Austria.

Ericsson, K., Nilsson, L. (2006). Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass and Bioenergy, 30(1), 1-15; https://doi.org/10.1016/j.biombioe.2005.09.001. (Crossref)

European Commission (2014). https://energy.ec.europa.eu/topics/energy-strategy/previous-energy-strategies_en.

Faaij, A. (2006). Bio-energy in Europe: changing technology choices. Energy Policy, 34(3), 322-342; https://doi.org/10.1016/j.enpol.2004.03.026. (Crossref)

Fischer, G., Schrattenholzer, L. (2001). Global Bioenergy Potentials through 2050. Biomass and Bioenergy, 20, 151 159; http://dx.doi.org/10.1016/S0961-9534(00)00074-X (Crossref)

Fischer, G., Hiznyik, E., Prieler, S., Van Velthuizen, H.T. (2007). Assessment of Biomass Potentials for Biofuel Feedstock Production in Europe: Methodology and Results; International Institute for Applied Systems Analysis: Laxenburg, Austria,

Haberl, H., Beringer, T., Bhattacharya, S.C., Erb, K.H., Hoogwijk, M. (2010). The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability, 2(5 6), 394-403. (Crossref)

Hames, B. (2009). Biomass compositional analysis for energy applications. Methods in Molecular Biology, 581, 145-67. https://doi.org/10.1007/978-1-60761-214-8_11. (Crossref)

Hoogwijk, M., Faaij, A., Eickhout, B., De Vries, B., Turkenburg, W. (2005). Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass and Bioenergy, 29(4), 225-257; https://doi.org/10.1016/j.biombioe.2005.05.002. (Crossref)

https://bioenergyeurope.org/

https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en (2014)

https://ec.europa.eu/eurostat/web/interactive-publications/energy-2023

https://energy.ec.europa.eu/news/bioenergy-report-outlines-progress-being-made-across-eu-2023-10-27_en

https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/biomass_en

https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en] [https://www.consilium.europa.eu/en/press/press-releases/2023/10/09/renewable-energy-council-adopts-new-rules/

https://energypost.eu/what-is-the-future-of-woody-biomass-in-the-eu-energy-mix/),(https://energy.ec.europa.eu/news/bioenergy-report-outlines-progress-being-made-across-eu-2023-10-27_en)

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Biomass

https://www.statista.com/statistics/1131629/poland-agricultural-land-area/

Janiszewska, D., Ossowska, L. (2022). The role of agricultural biomass as a renewable energy source in European Union countries. Energies, 15(18), 6756; https://doi.org/10.3390/en15186756. (Crossref)

Krasuska, E., Cadórniga, C., Tenorio, J., Testa, G., & Scordia, D. (2010). Potential land availability for energy crops production in Europe. Biofuels, Bioproducts and Biorefining, 4(6), 658-673; https://doi.org/10.1002/bbb.259. (Crossref)

Mandley, S., Daioglou, V., Junginger, H. (2020). EU bioenergy development to 2050. Renewable and Sustainable Energy Reviews, 127, 109858; https://doi.org/10.1016/j.rser.2020.109858. (Crossref)

McCormick, K., Kåberger, T. (2007). Key barriers for bioenergy in Europe: Economic conditions, know-how and institutional capacity, and supply chain co-ordination. Biomass and Bioenergy, 31, 443-452; https://doi.org/10.1016/j.biombioe.2007.01.008. (Crossref)

Moiseyev, A., Solberg, B., Kallio, A., Lindner, M. (2011). An economic analysis of the potential contribution of forest biomass to the EU RES target and its implications for the EU forest industries. Journal of Forest Economics, 17, 197-2013; https://doi.org/10.1016/j.jfe.2011.02.010. (Crossref)

Philippidis, G., Bartelings, H., Helming, J., M'barek, R. (2018). The Good, the Bad and the Uncertain: Bioenergy Use in the European Union. Energies, 11(10), 2703; https://doi.org/10.3390/en11102703. (Crossref)

Polizeli, M., Correa, E., Polizeli, A., Jorge, J. (2011). Hydrolases from Microorganisms used for Degradation of Plant Cell Wall and Bioenergy. Chapter 8, 115-134; https://doi.org/10.1007/978-0-387-92740-4_8. (Crossref)

Proskurina, S., Sikkema, R., Heinimö, J. (2016). Research paper Five years left – How are the EU member states contributing to the 20% target for EU's renewable energy consumption; the role of woody biomass. Biomass and Bioenergy, 95, 64-77; https://doi.org/10.1016/j.biombioe.2016.09.016. (Crossref)

Turkenburg, W.C., Beurskens, J., Faaij, A., Fraenkel, P., Fridleifsson, I., Lysen, E., Mills, D., Moreira, J.R., Nilsson, L.J., Schaap, A., et al. (2000). Renewable energy technologies. In the World Energy Assessment; Goldemberg, J., ed.; United Nations Development Programme: New York, NY, USA.

Van Dam, J., Faaij, A., Lewandowski, I. (2007). Biomass production potentials in Central and Eastern Europe under different scenarios. Biomass and Bioenergy, 31, 345-366; https://doi.org/10.1016/j.biombioe.2006.10.001. (Crossref)

Ward, R. (1983). Food, Chemical Feedstocks and Energy from Biomass. https://doi.org/10.1007/978-1-4757-0833-2_2. (Crossref)

Wieruszewski, M., Mydlarz, K. (2022). The Potential of the Bioenergy Market in the European Union – An Overview of Energy Biomass Resources. Energies, 15(24), 9601; https://doi.org/10.3390/en15249601. (Crossref)

Wood, J. (2004). Burn biomass burn co-fired biomass for electricity generation. Power Engineer, 18(5), 18-21. 10.1049/pe:20040502. (Crossref)

Statystyki

Downloads

Download data is not yet available.